The selection of stronger flavour within the UK hop breeding programme

Dr Peter Darby

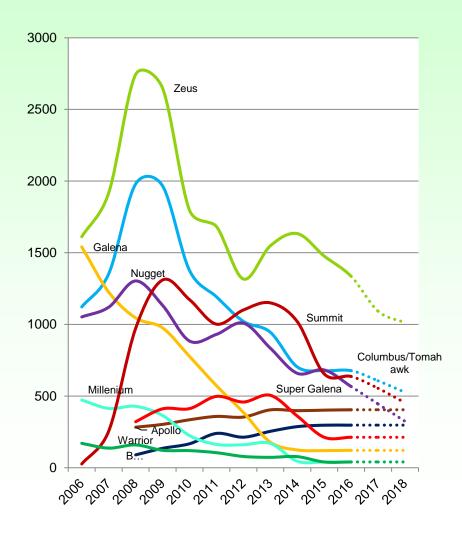
Brewers' Company's Brewing and Beer Brands Forum

Brewers' Hall, London 17 May 2017

Flavour Hops

- Term coined by Barth-Haas 2014
- Prefer to use "High Impact Hops"
- Intense aroma
- Used for flavour, irrespective of resin
- Examples include
- Nelson Sauvin (NZ), Cascade (USA), Galaxy (Australia), Lemondrop (USA)

USA craft sector


In 2015, 12% of US beer sales
 43% of US hop production

USA Aroma Acreage Development

3,500 3,000 Willamette Н Cascade 2,500 Centennial. Citra 2,000 Simcoe 1,500 Mosaic Chinook 1,000 500

USA Bitter Acreage Development

USA craft sector

In 2015, 12% of US beer sales
 43% of US hop production

UK following same trend
 >1500 breweries
 Demanding high impact hops

Non-UK Impact Hops

- Britain 51°N vs WA, USA 46°N
 Later maturity, less sunshine
- Lack resistance to UK spectrum pests and diseases esp, wilt
- Often privately owned varieties and unavailable to UK
- Need High Impact UK-grown hops

The selection of stronger flavour within the UK hop breeding programme

Objectives

- Identify intense and unusual flavours
- Select hops with commercial potential
- Select hops as parents for future
- Appraise different breeding strategies
- Find objective analytical indicators

Procedures

- Make crosses between specific parents
- Raise progeny, screen against diseases
- Establish a field population
- Select for harvest agronomic, fresh aroma
- Dried samples
- Aroma assessment by trade panel, blind refs
- Analysis
- Take forward as new variety or parent

Procedures

- Crosses made 2011-13
 - Pedigree: Cascade, Wild USA etc
 - Specific oils: Farnesene, Selinene
 - Inbreeding: Cascade, Saaz, Fuggle

From 2014 harvest (76 field selections, 39 to panel)

Sample No.	Intensity	Comments
FI81	9	Banana and floral
FI37	8	Lychees
Cascade	7	Spicy American
FJ28	7	Raspberry, orange
FK09	7	Tropical, fruity, sl ester
FZ01	7	Citrus, spicy mango
GC75	7	Earthy, sl sulphur
GE77	7	Zesty fruit
GA101	5	Soft fruits
GB53	5	Menthol
GC12	5	Spicy, nice

From 2014 harvest (76 field selections, 39 to panel)

- 2 more intense than reference Cascade
 - both s. Cascade
- 5 equally intense
 - 3 s. Cascade, 1 Farnesene, 1 inbreeding
- Range of different descriptors
- No association with HPLC resin components, including cohumulone

Sample No.	Intensity	Oil	Myr	Cary	Farn	Sels
		%	%	%	%	%
FI81	9	0.75	35.1	5.8	1.1	11.6
FI37	8	1.0	32.8	10.4	1.2	1.4
Cascade	7	0.9	38.3	7.8	8.2	4.2
FJ28	7	0.7	28.6	15.5	0.3	20.8
FK09	7	1.2	27.3	14.5	2.1	2.6
FZ01	7	0.8	19.8	22.1	0.2	0.7
GC75	7	1.2	27.8	19.9	4.6	20.3
GE77	7	1.1	26.7	15.3	0.3	25.2
GA101	5	0.3	18.4	7.4	6.4	10.0
GB53	5	0.5	24.2	5.9	2.1	34.1
GC12	5	0.3	6.8	10.5	6.7	2.5

From 2014 harvest Steam-distilled oils

- Higher aroma intensity associated with
 - Higher oil content
 - Higher Myrcene content
- High heritability for Farnesene and Selinenes
 - Not associated with aroma intensity

From 2015 harvest

- 3006 seedlings for assessment in field
- 79 selected for harvest
- Samples assessed by BHA Next Generation

Group

29 selected for trade panel

From 2015 harvest (79 field selections, 29 to panel)

Sample no.	Intensity	Comments
DM32	8	Lemon, grapefruit
DW7	8	Sweet floral
DW55	8	Geraniums, berry fruits
DY52	8	Rose
FG41	8	Cherry, floral
FJ25	8	Esters
Cascade	7	Cut grass, spicy, citrus

From 2015 harvest

 6 seedlings stronger aroma than reference Cascade, plus 9 equal to Cascade

 7 of 15 were seedlings of Cascade. By chance would expect only 4

None from inbreeding crosses

From 2015 harvest SPME / GC-MS oils (Twistaroma, France)

- Higher aroma intensity generally associated
 - Higher oil content
 - Higher Monoterpene content, incl Myrcene
- Not associated with volatile components of other oils eg., linalool or geraniol

Thiol analysis of oils

- Sulfur compounds
- Highly flavour-active at ppb
- Limits of detection
- Detected in beer and wine
- Distinct flavours attributed
- Only published in dry hops in April 2016 by NYSEOS, Montpellier France
- Very expensive: 15 x GC analysis

Thiol contents of selected samples (in µg/kg) analysis by NYSEOS, Montpellier, France

Variety	4MSP	C4MSP	3МН
Cascade	2.5	1.1	13.9
Sovereign	0.5	0.9	0.0

4MSP 4-methyl-4-sulfanylpentan-2-one

C4MSP Cysteine-4-methyl-4-sulfanylpentan-2-one

3MH 3-mercaptohexan-1-ol

Thiol contents of selected samples (in µg/kg) analysis by NYSEOS, Montpellier, France

Variety	4MSP	C4MSP	3МН
Cascade	2.5	1.1	13.9
DM32	6.0	2.5	0.0
DY52	3.5	1.3	68.5
Sovereign	0.5	0.9	0.0

4MSP 4-methyl-4-sulfanylpentan-2-one

C4MSP Cysteine-4-methyl-4-sulfanylpentan-2-one

3MH 3-mercaptohexan-1-ol

Taking forward

- 8 seedlings with aroma stronger than Cascade
- 5 of these for commercial evaluation
 - Pilot brews
- All 32 seedlings noted by panel retained as female parents
- 25 males selected as potential parents based on performance of their sisters
 - 12 of these showed field resistance to aphids or mildews

Conclusions

- Stronger aroma intensity is possible in new selections in the UK
- Pedigree breeding most consistent strategy especially with some parents (eg. Cascade)
- Association with higher oil content especially proportion monoterpenes
- Indications that alcohol thiols may be key components
- Need to see effect in brewing performance

